
© 2017 LitePoint, A Teradyne Company. All rights reserved.

APPLICATION NOTES

z8751 VSG DIO

z8751 PXIe Vector Signal Generator DIO Specifications & Applications 2

Port Descriptions

Front Panel

Label Type Description

I OUT +,- SMA Differential baseband I output

Q OUT +,- SMA Differential baseband Q output

EXT IN SMB External input for trigger or reference

EXT OUT SMB External output for trigger, reference or event

RF output SMA RF output

LO IN SMA Local oscillator input

DIO
Header, 8-pin,
0.05” spacing

Digital input/output, 4-signal (e.g. MIPI, SPI, I2C)

Contents

Port Description	 2

Block Diagram	 3

Digital Input/Output (DIO) 	 4

General Specifications	 4

DIO Clock Rates	 4

Pinout	 5

MIPI Functionality	 5

Accessories: Mating Connectors & Cables	 5

Applications	 6

DIO Output Commands	 7

MIPI Command Sequencing Example	 10

z8751 PXIe Vector Signal Generator DIO Specifications & Applications 3

Block Diagram

RF OUT

Simplified z8751 Block Diagram

I OUT

DIO

+

-

Q OUT
+

-
Memory FPGA

DAC

CLK/LO

IQ MOD

z8751 PXIe Vector Signal Generator DIO Specifications & Applications 4

Digital Input/Output (DIO)1

General Specifications

Specification Value

Functionality
4-bit bi-directional Digital I/O software programmable. Supports serial interfaces
such as MIPI, SPI, I2C, etc.

Programmable Clock Rate Up to 125 MHz

Programmable Logic ≥ 8 ns resolution

Programmable Direction Input (52 kΩ pull-down) or Output

Programmable Source/Destination Backplane triggers, external in/out, trigger event

Output Level

Programmable Level:
 Default: +1.2V into open load
 Range: +1.2V to +3.6V into open load
 Level accuracy: ±5%

Output Drive
≥ ±3 mA @ 1.2V
≥ ±8 mA @ 1.8V
≥ ±12 mA @ 3.6V

Output Enable Tri-State Output Capability

Connector
Latching Header, 8-pin, 0.05” spacing
4 DIO signals with ground pairs

DIO Clock Rates

Divider Sample Clock MIPI Clock REF Clock SSBI Clock

1 (no divide) 125 MHz 104 MHz 100 MHz 38.4 MHz

2 62.5 MHz 52 MHz 50 MHz 19.2 MHz

4 31.25 MHz 26 MHz 25 MHz 9.6 MHz

6 20.833 MHz 17.333 MHz 16. 666 MHz 6.4 MHz

8 15.625 MHz 13 MHz 12.5 MHz 4.8 MHz

10 12.5 MHz 10.4 MHz 10 MHz 3.84 MHz

12 10.4166 MHz 8.666 MHz 8.333 MHz 3.2 MHz

… … … … …

510 245.098 kHz 203.921 kHz 196.078 kHz 75.294 kHz

1 DIO connector available only on PXIe product revision 3 and later.

z8751 PXIe Vector Signal Generator DIO Specifications & Applications 5

Pinout

Pin Number Signal Pin Number Signal

1 GND 2 DIO0

3 GND 4 DIO1

5 GND 6 DIO2

7 GND 8 DIO3

MIPI Functionality

Feature Details

Transactions Supported

Write register 0
Write register
Read Register
Write Extended
Read Extended
Write Long
Read Long

Sequences

Up to 4 serial data stream sequences
Max of 32 RD/WR MIPI byte transactions per sequence,
Multi-sequence capture capable,
Single transaction pre/post a burst transactions

Triggering Independent triggers per data stream, armed by previous sequence completion

Buffer Update Ability to update one buffer while playing other buffer (ping/pong)

Accessories: Mating Connectors & Cables

Part Part Number

Mating Header Connector
(requires own cable)

3M, 45108-010030
Strain relief: 3M, 3448-45108

6” Mating Cable with header connector LitePoint, 0150-ZDIO-002

12” Mating Cable with header connector LitePoint, 0150-ZDIO-003

24” Mating Cable with header connector LitePoint, 0150-ZDIO-004

24” Mating Cable with header connector
and Breakout Board

LitePoint, 0150-ZDIO-001

z8751 PXIe Vector Signal Generator DIO Specifications & Applications 6

Applications

The LitePoint z8751 Vector Signal Generator is suitable for WLAN 802.11 a/b/g/j/n/p/ac/af/ah/ax, Cellular 2G/3G/4G, Bluetooth
and ZigBee standards. The z8751 provides RF and baseband I/Q signal outputs corresponding to vector modulated signals. In
addition, a DIO connector adds serial interfaces such as MIPI, SPI and I2C that can be time synchronized to the RF signal.

MIPI-RFFE testing is a specific application for the DIO connector. Preloaded MIPI patterns are generated in a sequence that is
time aligned with the RF output signal. This is necessary for PA/FEM testing where the device is enabled/disabled using a MIPI
command that must be accurately time-aligned with the RF burst.

Synchronized MIPI testing is a challenging procedure. The time gap between the MIPI command and the RF pulse should
be almost negligible. The DIO connector and the RF signal synchronize automatically through the same FPGA. The auto
synchronization is successful with burst and modulated RF signals.

SPI is a serial interface method designed for short distance communication. PA/FEM components with SPI capabilities exchange
synchronized data with a master device (z8751). The SPI packet determines mode and state of PA/FEM components.

The DIO connector also configures General Purpose Input/output (GPIO) functionalities. GPIO pins are unused by default, but
can be configured as input or output depending on the testing scenario. During testing GPIO pins set input/output modes on
chipsets, external electronics, switches, etc.

Synchronized MIPI testing

z8751 PXIe Vector Signal Generator DIO Specifications & Applications 7

DIO Output Commands

Command Parameter Form Response Notes

:DIO:CLOCk <frequency> DIO BB Only, <frequency in Hz>

:DIO:CLOCk? <frequency>

:DIO<n>:DATA <1|0> <n> = 0-3 DIO pin selection (PXIe_DIO only)

:DIO<n>:DATA? <1|0>

<n> = 0-3 DIO pin selection.
Reads back configured output data.
See sense command for read data.
(PXIe_DIO only)

:DIO<n>:DIRection <IN|OUT> <n> = 0-3 DIO pin selection. (PXIe_DIO only)

:DIO<n>:DIRection? <IN|OUT> <n> = 0-3 DIO pin selection. (PXIe_DIO only)

:DIO:ENABle <ON|OFF,1|0> Global Enable (PXIe_DIO only)

:DIO:ENABle? <1|0 > Query global enable (PXIe_DIO only)

:DIO:LEVel <voltage>
Voltage is floating point < 3.6V
(PXIe_DIO only)

:DIO:LEVel? <voltage> Floating point (PXIe_DIO only)

:DIO:RESet Resets SDS to Defaults/Legacy

:DIO:SEQuence:BURSt <ON|OFF,1|0> 1=Burst (single-shot), 0 = continuous

:DIO:SEQuence:BURSt? <ON|OFF,1|0> 1=Burst (single-shot), 0 = continuous

:DIO:SEQuence:CLEar <sequence_ID> Clears sequence of commands.

:DIO:SEQuence:DELay
<sequence_ID>,
<cycles>

<sequence_ID> specifies the SDS command
buffer
<cycles> sets the number of clock cycles
(periods) to delay

:DIO:SEQuence:DELay? <sequence_ID>, <cycles>

<sequence_ID> specifies the SDS command
buffer
<cycles> returns the currently configured
number of delay cycles

:DIO:SEQuence:GAP <gap>
<gap> sets the number of extra clock cycles at
the end of each command that the SDS bus will
be left at idle.

:DIO:SEQuence:GAP? <gap>
<gap> returns the currently configured
command gap, def:5

:DIO:SEQuence:STATus? <status>
Returns the current state machine status
register (bits 0:3).

z8751 PXIe Vector Signal Generator DIO Specifications & Applications 8

:DIO:SEQuence:TRIGger

<seq_id>,<trig_
src>, <trig_mode>,
<trig_pol>, <trig_
dly_en>

<seq-id> = 1-4, SDS Sequence Number
<trig_src> = refer to footnote in page 9
<trig_mode> = <1|0>, 0=edge,1=level
<trig_pol> = <1|0>, 0=normal, 1=inverted
(low-truth)
<trig_dly_en> = <1|0>, 1=enabled delay,
0 = no delay

:DIO:SEQuence:TRIGger? <seq_id>
<trig_src>,<trig_
mode>, <trig_pol>,
<trig_dly_en>

:DIO<n>:SOURce

0-7 or TTLTrg0-7
9 or DIO (default)
10 or SUBModule1
12 or MIPData
13 or MIPClk
14 or EXTernal
8,11, 15: Reserved

<n> = 0-3 DIO pin selection. (PXIe_DIO only)

:DIO<n>:SOURce?

0-7 or TTLTrg0-7
9 or DIO (default)
10 or SUBModule1
12 or MIPData
13 or MIPClk
14 or EXTernal
8,11, 15: Reserved

<n> = 0-3 DIO pin selection. (PXIe_DIO only)

:DIO:MIPI:IMMediate:READ?
<MIPI_Slave_ID>,
<half_speed>,
<slave_reg_addr>

<slave_response, 1
byte>

Immediately generates MIPI “Write Register”
command

:DIO:MIPI:IMMediate:WRITe

<MIPI_Slave_ID>,
<half_speed>,
<slave_reg_addr>,
<slave_reg_data>

Immediately generates MIPI “READ Register”
command

:DIO:MIPI:IMMediate:ZERO
<MIPI_Slave_ID>,
<slave_reg_data>

Immediately generates the protocol specific
MIPI “Write Zero Register” command

:DIO:MIPI:SEQuence:APPend

<SDS_Sequence_
ID>, <Read_write>,
<MIPI_Slave_ID>,
<slave_reg_addr>,
<slave_reg_data>

Appends a single MIPI command to the
specified command sequence buffer.
SDS_Sequence_ID = 1-4

:DIO:MIPI:SEQuence:ENABle
<SDS_Sequence_
ID>, <ON|OFF,1|0>

Enables specified buffer and configures internal
signal routing for MIPI command generation.

:DIO:MIPI:SEQuence:ENABle?
<SDS_Sequence_
ID>

<ON|OFF,1|0> Returns whether the specified buffer is enabled.

:DIO:MIPI:SEQuence:HALF <1|0>
Enables/Disables Half-speed clocking during
data read.

:DIO:MIPI:SEQuence:HALF? <1|0>

:DIO:SSBI:IMMediate:PAIR?

<read_write>,
<pair_id>, <slave_
reg_addr>, <slave_
reg_data>

Read:<slave_
response>
Write: <0>

<read_write> = 1 for write, 0 for read
<pair_id> = 0|1
Immediately generates SSBI register read/write
command on specified DIO port pairing.

z8751 PXIe Vector Signal Generator DIO Specifications & Applications 9

:DIO:SSBI:IMMediate:READ? <slave_reg_addr>
<slave_response,
1 byte>

Immediately generates SSBI “READ Register”
command

:DIO:SSBI:IMMediate:WRITe
<slave_reg_addr>,
<slave_reg_data>

Immediately generates SSBI “Write Register”
command

:DIO:SSBI:SEQuence:APPend

<SDS_Sequence_
ID>, <Read_write>,
<slave_reg_addr>,
<slave_reg_data>

Appends a single SSBI command to the
specified command sequence buffer.
SDS_Sequence_ID = 1-4

:DIO:SSBI:SEQuence:BLOCk? <command_count> <num_responses>

Executes a previously built sequence of
commands and returns the number of read
commands executed. Read responses are
stored in ScratchPad.

:DIO:SSBI:SEQuence:ENABle
<SDS_Sequence_
ID>, <ON|OFF,1|0>

Enables specified buffer and configures internal
signal routing for SSBI command generation.

:DIO:SSBI:SEQuence:ENABle?
<SDS_Sequence_
ID>

<ON|OFF,1|0> Returns whether the specified buffer is enabled.

:DIO:SYNC:CLEAR Clears Sync config and buffers.

:DIO:SYNC:COERCe <on|off,1|0>

Enables ITG Gap coercion to synchronize
SDS:SYNC and waveform play
NOTE: Sample clock only:
125e6, 62.5e6 & 31.25e6

:DIO:SYNC:COERCe? <1|0>

:DIO:SYNC:ENABle
<on|off,1|0>,
<bytes>

Configures SDS CMD Buffer 4 and routes
outputs of RCV1 and RCV2 to DIO 2/3
respectively

:DIO:SYNC:ENABle? <1|0>
Returns whether a sequence is enabled on SDS
CMD buffer 4.

Triggering Options:

“TRIG” = Trigger Even

“GCOM” = Generation Complete (end of waveform)

“EXT” = External Input on instrument

“CONS” = Constant register (manually toggled)

“TSYN” = Delayed trigger, (i.e., PA Enable delayed trigger)

“SYNC1” = SYNC1 output/marker

 “SYNC2” = SYNC2 output/marker

“DIO<0-3>” = DIO input pins 0-3
(note: Pins 0 and 1 are used for MIPI, Pins 2 & 3 are used for SSBI,
You will need to use “unused” pins for the protocol you are currently working with)

“TTL<0-7>” = TTL (PXI Backplane triggers 0-7)

z8751 PXIe Vector Signal Generator DIO Specifications & Applications 10

MIPI Command Sequencing Example

//DIO Port Init, perform once to set up the communications port:

zbind_send(ztvsg_handle,ZT_TRUE,”outp:dio:reset”);

zbind_send(ztvsg_handle,ZT_TRUE,”outp:dio:enab on”);

zbind_send(ztvsg_handle,ZT_TRUE,”outp:dio:lev 1.8”);

zbind_send(ztvsg_handle,ZT_TRUE,”outp:dio:clock 25e6”);

zbind_send(ztvsg_handle,ZT_TRUE,”outp:dio0:sour 13”); // MIPI Clock pin = DIO0

zbind_send(ztvsg_handle,ZT_TRUE,”outp:dio1:sour 12”); // MIPI Data pin = DIO1

// Note: you can specify the DIO pins (0-3)

//Perform immediate commands, when needed:

//MIPI immediate Cmd, writes 1 byte to a slave register address:

// Params: Slave Addr,Half-speed,RegAddr,Data

zbind_send(ztvsg_handle,ZT_TRUE,”outp:dio:mipi:imm:write %d,0,11,3”,slave_addr);

//MIPI Immediate Read:

// Params: Slave Addr,Half-speed,RegAddr

zbind_send(ztvsg_handle,ZT_TRUE,”outp:dio:mipi:imm:read? %d,0,11”, slave_addr);

// Use zbind_receive to get the return data, 1Byte only:

zbind_receive(ztvsg_handle,ZT_TRUE,”%d”,&data);

z8751 PXIe Vector Signal Generator DIO Specifications & Applications 11

zbind.h information on the zbind_send() and zbind_receive() commands:

/*===*/

/* Function: zbind_send */

/* Purpose: This function sends a command string to the instrument with */

/* optional locking and string formatting. */

/* Parameter 1 is the zbind device handle. */

/* Parameter 2 is the lock state. ZT_TRUE will lock subsequent */

/* commands until a zbind_receive or zbind_releaselock occurs. */

/* Parameter 3 is the format string. This should be in standard */

/* formatting, using string conversion specifications. */

/* The format string defines whether additional parameters are used. */

/* Returns the status of the instrument communication. */

/*===*/

ZT_ERROR _ZBIND_FUNC zbind_send (ZT_HANDLE dev, ZT_BOOL lock, s8 format_str[], ...);

/*===*/

/* Function: zbind_receive */

/* Purpose: This function returns a response string from the instrument */

/* with optional locking and string formatting. */

/* Parameter 1 is the zbind device handle. */

/* Parameter 2 is the lock state. ZT_TRUE will unlock a current */

/* lock, ZT_FALSE will only call the instrument if it is not */

/* currently locked. */

/* Parameter 3 is the format string. This should be in standard */

/* formatting, using string conversion specifications. */

/* The format string defines whether additional parameters are used. */

/* Returns the status of the instrument communication. */

/*===*/

ZT_ERROR _ZBIND_FUNC zbind_receive (ZT_HANDLE dev, ZT_BOOL unlock, s8 format_str[], ...);

Copyright © 2017 LitePoint, A Teradyne Company.

All rights reserved

RESTRICTED RIGHTS LEGEND
No part of this document may be
reproduced, transmitted, transcribed,
stored in a retrieval system, or translated
into any language or computer
language, in any form or by any means,
electronic, mechanical, magnetic,
optical, chemical, manual, or otherwise,
without the prior written permission of
LitePoint Corporation.

DISCLAIMER
LitePoint Corporation makes no
representations or warranties with
respect to the contents of this manual or
of the associated LitePoint Corporation
products, and specifically disclaims any
implied warranties of merchantability
or fitness for any particular purpose.
LitePoint Corporation shall under no
circumstances be liable for incidental
or consequential damages or related
expenses resulting from the use of this
product, even if it has been notified of
the possibility of such damages.

If you find errors or problems with this
documentation, please notify LitePoint
Corporation at the address listed
below. LitePoint Corporation does not
guarantee that this document is error-
free. LitePoint Corporation reserves the
right to make changes in specifications
and other information contained in this
document without prior notice.

Doc: 1075-0078-001
July 2017 Rev 2

TRADEMARKS
LitePoint and the LitePoint logo are
registered trademarks of LitePoint
Corporation. z8751 is a trademark
of LitePoint Corporation. All other
trademarks or registered trademarks
are owned by their respective owners.

CONTACT INFORMATION
LitePoint Corporation
575 Maude Court
Sunnyvale, CA 94085-2803
United States of America

+1.866.363.1911
+1.408.456.5000

LITEPOINT TECHNICAL SUPPORT
www.litepoint.com/support

